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Newtonian Electrodynamics from General-Relativistic Arguments
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In general relativity, a vacuum is electrically polarized in the presence of a magnetic field whenever the
mixed components of the metric tensor do not vanish (which occurs in astronomy around a massive rotating
object because of the dragging of the inertial frame). This note illustrates the phenomenon by making use of the
fact that it does not require curvature and, hence, may occur in a flat space-time: In fact, in corotating co-
ordinates the vacuum around a rotating, magnetic, newtonian star is electrically charged. By assuming near
sphericity of the star and an external 2#-pole poloidal magnetic field, it is easy to evaluate the electrostatic
potential, which reflects the existence of the fictitious charge density with a non-harmonic term proportional
to (1/r)* P, .14 (cos 6). This note also establishes a convenient formalism for the treatment of the general-rela-

tivistic aspects of the same problem.
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Schiff (1939) recognized that the very formula-
tion of electrodynamics in rotating coordinates is a
general-relativistic problem, even when the Riemann
tensor vanishes (a similar conclusion can be inferred
from Landau and Lifshitz 1962, p. 296). Although
no need for such a formalism arises in the galilean
space-time to be considered below and special-rela-
tivistic considerations suffice (see (oldreich and
Julian, 1969 and the Appendix), the study of the
fictitious charge (and current) densities arising with
the adoption of rotating coordinates, in analogy to
the Coriolis and centrifugal forces of mechanics,
illustrates the nature of the virtual charges in a
curved space (Occhionero, 1970).

Irvine (1964) clarifies the controversial problem
of relating, in any metric g,5, the em tensor F,; to
the physical components of the em field, as actually
measured by any specific observer: The ambiguities
often met in the literature can be avoided only by
using the observer’s orthonormal tetrad, OT (Synge,
1960), which translates in mathematical terms the
notion of a locally tangent inertial system of refe-
rence (here the locally corotating observer). With
2% = ct and space coordinates 2, 22 and 3, the OT,
A%y, defines uniquely its observer’s physical em fields
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as follows:
Fo o) = 250 Fop »

Ew=Fu > (1)
B) = F(y (3 and cyclic,

where Greek letters range from 0 to 3 and Latin
from 1 to 3.

The poloidal, axially symmetric, stationary mag-
netic field of a rotating or non-rotating, newtonian
or relativistic star is best studied in spherical polar
coordinates,

B=rat=0,2*=¢, (2)

from the generalized wave-equations for the vector
potential, 4,

Fop= Aup— Ap,a- (3)

Under time- and azimuth-independence, an obvious
gauge is satisfied and the equations for 4, and 4,
may be cast in the convenient form
W Z
O4dp+2 NN{ }F =2 NN{ }
UARE T S U2 R I
.FZN+ (47!/0)}]7 W’Z=O:3, W=|=Z’ (4)

1 o — 0
O=/=7 7w V-99" 5 -
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For a non-rotating, spherical and newtonian star,

gop = diag (+ 1, — 1, — 7%, — 7% sin?0), )

— As,rr — (1) A (45) = (471[0)s , (6)
: g 1 3
A= Smea—o-mﬁ . (7)

The A-operator (which is not self-adjoint) has the
following eigenfunctions (which are not orthogonal)

Aypa(0) +n(n+ 1y, (0) =0,

1 . d
Yn (6) = msm 0 a0 P,, (GOSB) (8)
1
= @n+1) [Pnys— Pnil.
They satisfy the relations

cosO P, +ny, = P,,q, 0
cosf P, — (n+ 1)y, = P,_,, ®)
and can be used to describe the 2"-pole magnetic
field. The latter must be continuous at the surface
of the star and regular at its center: A current layer
at r = L < R satisfies these requirements in a sche-
matic, but convenient way, since it makes Eq. (6)
actually homogeneous and provides model-independ-
ent considerations (L disappears from the final
results). The appropriate continuous solution of (6)
is, then,

for 0 < r < L, A= BR?(R/L)**+1(r/R)*+1y,(0),
for L < r, A;= BR?*(R[r)"y,(0), (10)
where the chosen normalization makes equal to B
the field on the poles, r = R, 6 = 0 and sx. The OT

of the observer at rest with respect to the coordinates
is

l"(o) = (1’ 0,0, 07)’ }'a(l) = (0’ 1,0, O) P (11)
Z-“(z) = (0,0, l/r: 0), }*“(s) =(0,0,0, l/rsinﬁ) ’

and operates in (1) as a set of geometrical scaling
functions:

By = B(R|Ly+(r|R)"1 Py,

for0<r<UL, (12)
14dP,
B = B(R/L)*+(r|R)" -5
By = B(R|r)"+2P,,
forL<r, (13)
1 dP,
B = — B(BIr"** 178 -
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Let now the star be imagined in slow rotation
with uniform angular velocity (2 around the 6 =0
axis, and let corotating coordinates be chosen

t'=tr=r0=04d¢=d¢—0t. (14)

By neglecting, for shortness, all the £22-corrections
and, consistently, the rotational deformation of the
star, the g,g's retain the form (5) on the diagonal,
but acquire a new off-diagonal element,

Jos = — (L2fe)r*sin0 , (15)

which, in this formulation, couples electric and mag-
netic fields (Landau and Lifshitz, 1962; Occhionero,
1970). Primes will be omitted henceforth. The OT
of the observer locally at rest with respect to these
coordinates is

#oy = Koy 1ty = Moy By = 2y » (16)
= (5 7sin6,0,0, 5.7,

the A’s being defined in (11). For the observer (16),
the relation of the physical magnetic field to F,; is
the same as for (11) (aside from Q2-corrections which
imply a tangential discontinuity of B on the star
surface and a fictitious surface current) and the
equation for 4,, (6), remains unchanged: Hence the
magnetic field is given again by (12) and (13). The
electric field is

Ey =F10, B = Fyolr, Big) = F3olrsinf =0, (17)

so that its vanishing inside the conductor is equi-
valent to the constancy of A4, therein. For W =0,
Eq. (14) yields
20

— V24y=——_5 (rF3,+ cotOF; ;) + 4mg, (18)
the r.h.s. of which consists of the fictitious charge
density (Schiff, 1939) and of the real polarization p;
only the latter vanishes outside the star under the
present assumption of perfect vacuum. Inside, the
necessary condition for the constancy of A4,, is the
vanishing of the r.h.s. of (18): Hence,

0= = g (BILY™+1(1[Ry=2 P, _y cos6),

for0<r< L,

0= — 5 (Blry*+* Py(cosh), for L<r< R. (19)

The volume integral of g over the star vanishes for
any n > 1, but for n = 1, there is a net charge inside
the star,

Q=-%(QBRY), (20)
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even if the total charge of the star may still be zero,
as in Goldreich and Julian (1969). For » = R (with
o = 0), the solution to (18) is the sum of an inhomo-
geneous integral and a harmonic function; the arbi-
trary constants are determined by the continuity
of 4,:

Ay=0,forr< R, (21)

4o = (2ff-li; 5 [(B[r)" — (R[r)"+2] Py, 1 (cosb),

forr= R,
which proves the statement of the abstract. Finally,
the surface charge density is

QBR
0=~ Grc@n 1) Lnt(cost), (22)

and integrates to zero for all n’s.

Appendix

Special relativistic considerations provide an
alternative evaluation of (21): The OT of the fixed
observer is A%, of (11), and the OT of the locally
corotating observer, as viewed from the non-rotating
coordinates, is

1’(‘0) = (1: 0,0, .Q/G), 7&) = ,u(‘k) ) (A]')
with the u’s of (16). The relation between the em
fields measured by the two observers can be worked
out from (1) (Irvine, 1964) and is, of course, a Lorentz
transformation (exact when the y’s are inserted),

EW)=EQAN+1c(2 xr) xB(A),

B(») =B().

(A2)
(A2)

Internally, E(y)= 0 (Goldreich and Julian, 1969),
and the expressions (19) and (20) are immediately
derived from

V-E=-22-B+ (2 xr)-V xB,

Externally, E(4) is the gradient of a harmonic funec-
tion, but E () is not, because of (A2):

E()= 3 EV[RI+P,(cosh)], (A3)
8=0

QBR?

1/6(9 xr) ><B=(2n—_|_rc

VI(B[rY(Pp—y— Ppia)] -
(A4)

The constants in (A3) (K,=0 in Goldreich and
Julian, 1969) are determined from

E(O)("’)=0at1'=R. (A5)
This gives
K,=0fors+n—-1,n+1,
QBR?
Brn= K= ne
Ey=-Vo,
Q BR?
P = g 71y LBl — (RIr)*+2] Py 1 (c080) ,

in agreement with (21).
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